Skip to content

utils

aquacrop.utils.data

get_data(filename, **kwargs)

get selected data file

Source code in aquacrop/utils/data.py
25
26
27
28
29
30
31
def get_data(filename, **kwargs):
    """
    get selected data file
    """
    filepath = os.path.join(data.__path__[0], filename)

    return np.genfromtxt(filepath, **kwargs)

get_filepath(filename)

get selected data file

Source code in aquacrop/utils/data.py
16
17
18
19
20
21
22
def get_filepath(filename):
    """
    get selected data file
    """
    filepath = os.path.join(data.__path__[0], filename)

    return filepath

list_data()

lists all built-in data files

Source code in aquacrop/utils/data.py
 7
 8
 9
10
11
12
13
def list_data():
    """
    lists all built-in data files
    """
    path = data.__path__[0]

    return os.listdir(path)

aquacrop.utils.lars

AquaCropModel

This is the main class of the AquaCrop-OSPy model. It is in charge of executing all the operations.

Parameters:

sim_start_time (str): YYYY/MM/DD, Simulation start date

sim_end_time (str): date YYYY/MM/DD, Simulation end date

weather_df: daily weather data , created using prepare_weather

soil: Soil object contains paramaters and variables of the soil
        used in the simulation

crop: Crop object contains Paramaters and variables of the crop used
        in the simulation

initial_water_content: Defines water content at start of simulation

irrigation_management: Defines irrigation strategy

field_management: Defines field management options

fallow_field_management: Defines field management options during fallow period

groundwater: Stores information on water table parameters

co2_concentration: Defines CO2 concentrations

off_season: (True) simulate off-season or (False) skip ahead to start of 
            next growing season
Source code in aquacrop/core.py
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
class AquaCropModel:
    """
    This is the main class of the AquaCrop-OSPy model.
    It is in charge of executing all the operations.

    Parameters:

        sim_start_time (str): YYYY/MM/DD, Simulation start date

        sim_end_time (str): date YYYY/MM/DD, Simulation end date

        weather_df: daily weather data , created using prepare_weather

        soil: Soil object contains paramaters and variables of the soil
                used in the simulation

        crop: Crop object contains Paramaters and variables of the crop used
                in the simulation

        initial_water_content: Defines water content at start of simulation

        irrigation_management: Defines irrigation strategy

        field_management: Defines field management options

        fallow_field_management: Defines field management options during fallow period

        groundwater: Stores information on water table parameters

        co2_concentration: Defines CO2 concentrations

        off_season: (True) simulate off-season or (False) skip ahead to start of 
                    next growing season


    """

    # Model parameters
    __steps_are_finished: bool = False  # True if all steps of the simulation are done.
    __has_model_executed: bool = False  # Determines if the model has been run
    __has_model_finished: bool = False  # Determines if the model is finished
    __start_model_execution: float = 0.0  # Time when the execution start
    __end_model_execution: float = 0.0  # Time when the execution end
    # Attributes initialised later
    _clock_struct: "ClockStruct"
    _param_struct: "ParamStruct"
    _init_cond: "InitialCondition"
    _outputs: "Output"
    _weather: "DataFrame"

    def __init__(
        self,
        sim_start_time: str,
        sim_end_time: str,
        weather_df: "DataFrame",
        soil: "Soil",
        crop: "Crop",
        initial_water_content: "InitialWaterContent",
        irrigation_management: Optional["IrrigationManagement"] = None,
        field_management: Optional["FieldMngt"] = None,
        fallow_field_management: Optional["FieldMngt"] = None,
        groundwater: Optional["GroundWater"] = None,
        co2_concentration: Optional["CO2"] = None,
        off_season: bool=False,
    ) -> None:

        self.sim_start_time = sim_start_time
        self.sim_end_time = sim_end_time
        self.weather_df = weather_df
        self.soil = soil
        self.crop = crop
        self.initial_water_content = initial_water_content   
        self.co2_concentration = co2_concentration
        self.off_season = off_season

        self.irrigation_management = irrigation_management
        self.field_management = field_management
        self.fallow_field_management = fallow_field_management
        self.groundwater = groundwater

        if irrigation_management is None:
            self.irrigation_management = IrrigationManagement(irrigation_method=0)
        if field_management is None:
            self.field_management = FieldMngt()
        if fallow_field_management is None:
            self.fallow_field_management = FieldMngt()
        if groundwater is None:
            self.groundwater = GroundWater()
        if co2_concentration is None:
            self.co2_concentration = CO2()

    @property
    def sim_start_time(self) -> str:
        """
        Return sim start date
        """
        return self._sim_start_time

    @sim_start_time.setter
    def sim_start_time(self, value: str) -> None:
        """
        Check if sim start date is in a correct format.
        """

        if _sim_date_format_is_correct(value) is not False:
            self._sim_start_time = value
        else:
            raise ValueError("sim_start_time format must be 'YYYY/MM/DD'")

    @property
    def sim_end_time(self) -> str:
        """
        Return sim end date
        """
        return self._sim_end_time

    @sim_end_time.setter
    def sim_end_time(self, value: str) -> None:
        """
        Check if sim end date is in a correct format.
        """
        if _sim_date_format_is_correct(value) is not False:
            self._sim_end_time = value
        else:
            raise ValueError("sim_end_time format must be 'YYYY/MM/DD'")

    @property
    def weather_df(self) -> "DataFrame":
        """
        Return weather dataframe
        """
        return self._weather_df

    @weather_df.setter
    def weather_df(self, value: "DataFrame"):
        """
        Check if weather dataframe is in a correct format.
        """
        weather_df_columns = "Date MinTemp MaxTemp Precipitation ReferenceET".split(" ")
        if not all([column in value for column in weather_df_columns]):
            raise ValueError(
                "Error in weather_df format. Check if all the following columns exist "
                + "(Date MinTemp MaxTemp Precipitation ReferenceET)."
            )

        self._weather_df = value

    def _initialize(self) -> None:
        """
        Initialise all model variables
        """

        # Initialize ClockStruct object
        self._clock_struct = read_clock_parameters(
            self.sim_start_time, self.sim_end_time, self.off_season
        )

        # get _weather data
        self.weather_df = read_weather_inputs(self._clock_struct, self.weather_df)

        # read model params
        self._clock_struct, self._param_struct = read_model_parameters(
            self._clock_struct, self.soil, self.crop, self.weather_df
        )

        # read irrigation management
        self._param_struct = read_irrigation_management(
            self._param_struct, self.irrigation_management, self._clock_struct
        )

        # read field management
        self._param_struct = read_field_management(
            self._param_struct, self.field_management, self.fallow_field_management
        )

        # read groundwater table
        self._param_struct = read_groundwater_table(
            self._param_struct, self.groundwater, self._clock_struct
        )

        # Compute additional variables
        self._param_struct.CO2 = self.co2_concentration
        self._param_struct = compute_variables(
            self._param_struct, self.weather_df, self._clock_struct
        )

        # read, calculate inital conditions
        self._param_struct, self._init_cond = read_model_initial_conditions(
            self._param_struct, self._clock_struct, self.initial_water_content, self.crop
        )

        self._param_struct = create_soil_profile(self._param_struct)

        # Outputs results (water_flux, crop_growth, final_stats)
        self._outputs = Output(self._clock_struct.time_span, self._init_cond.th)

        # save model _weather to _init_cond
        self._weather = self.weather_df.values

    def run_model(
        self,
        num_steps: int = 1,
        till_termination: bool = False,
        initialize_model: bool = True,
        process_outputs: bool = False,
    ) -> bool:
        """
        This function is responsible for executing the model.

        Arguments:

            num_steps: Number of steps (Days) to be executed.

            till_termination: Run the simulation to completion

            initialize_model: Whether to initialize the model \
            (i.e., go back to beginning of season)

            process_outputs: process outputs into dataframe before \
                simulation is finished

        Returns:
            True if finished
        """

        if initialize_model:
            self._initialize()

        if till_termination:
            self.__start_model_execution = time.time()
            while self._clock_struct.model_is_finished is False:
                (
                    self._clock_struct,
                    self._init_cond,
                    self._param_struct,
                    self._outputs,
                ) = self._perform_timestep()
            self.__end_model_execution = time.time()
            self.__has_model_executed = True
            self.__has_model_finished = True
            return True
        else:
            if num_steps < 1:
                raise ValueError("num_steps must be equal to or greater than 1.")
            self.__start_model_execution = time.time()
            for i in range(num_steps):

                if (i == range(num_steps)[-1]) and (process_outputs is True):
                    self.__steps_are_finished = True

                (
                    self._clock_struct,
                    self._init_cond,
                    self._param_struct,
                    self._outputs,
                ) = self._perform_timestep()

                if self._clock_struct.model_is_finished:
                    self.__end_model_execution = time.time()
                    self.__has_model_executed = True
                    self.__has_model_finished = True
                    return True

            self.__end_model_execution = time.time()
            self.__has_model_executed = True
            self.__has_model_finished = False
            return True

    def _perform_timestep(
        self,
    ) -> Tuple["ClockStruct", "InitialCondition", "ParamStruct", "Output"]:

        """
        Function to run a single time-step (day) calculation of AquaCrop-OS
        """

        # extract _weather data for current timestep
        weather_step = _weather_data_current_timestep(
            self._weather, self._clock_struct.time_step_counter
        )

        # Get model solution_single_time_step
        new_cond, param_struct, outputs = solution_single_time_step(
            self._init_cond,
            self._param_struct,
            self._clock_struct,
            weather_step,
            self._outputs,
        )

        # Check model termination
        clock_struct = self._clock_struct
        clock_struct.model_is_finished = check_model_is_finished(
            self._clock_struct.step_end_time,
            self._clock_struct.simulation_end_date,
            self._clock_struct.model_is_finished,
            self._clock_struct.season_counter,
            self._clock_struct.n_seasons,
            new_cond.harvest_flag,
        )

        # Update time step
        clock_struct, _init_cond, param_struct = update_time(
            clock_struct, new_cond, param_struct, self._weather, self.crop
        )

        # Create  _outputsdataframes when model is finished
        final_water_flux_growth_outputs = outputs_when_model_is_finished(
            clock_struct.model_is_finished,
            outputs.water_flux,
            outputs.water_storage,
            outputs.crop_growth,
            self.__steps_are_finished,
        )

        if final_water_flux_growth_outputs is not False:
            (
                outputs.water_flux,
                outputs.water_storage,
                outputs.crop_growth,
            ) = final_water_flux_growth_outputs

        return clock_struct, _init_cond, param_struct, outputs

    def get_simulation_results(self):
        """
        Return all the simulation results
        """
        if self.__has_model_executed:
            if self.__has_model_finished:
                return self._outputs.final_stats
            else:
                return False  # If the model is not finished, the results are not generated.
        else:
            raise ValueError(
                "You cannot get results without running the model. "
                + "Please execute the run_model() method."
            )

    def get_water_storage(self):
        """
        Return water storage in soil results
        """
        if self.__has_model_executed:
            return self._outputs.water_storage
        else:
            raise ValueError(
                "You cannot get results without running the model. "
                + "Please execute the run_model() method."
            )

    def get_water_flux(self):
        """
        Return water flux results
        """
        if self.__has_model_executed:
            return self._outputs.water_flux
        else:
            raise ValueError(
                "You cannot get results without running the model. "
                + "Please execute the run_model() method."
            )

    def get_crop_growth(self):
        """
        Return crop growth results
        """
        if self.__has_model_executed:
            return self._outputs.crop_growth
        else:
            raise ValueError(
                "You cannot get results without running the model. "
                + "Please execute the run_model() method."
            )

    def get_additional_information(self) -> Dict[str, Union[bool, float]]:
        """
        Additional model information.

        Returns:
            dict: {has_model_finished,execution_time}

        """
        if self.__has_model_executed:
            return {
                "has_model_finished": self.__has_model_finished,
                "execution_time": self.__end_model_execution
                - self.__start_model_execution,
            }
        else:
            raise ValueError(
                "You cannot get results without running the model. "
                + "Please execute the run_model() method."
            )

sim_end_time property writable

Return sim end date

sim_start_time property writable

Return sim start date

weather_df property writable

Return weather dataframe

get_additional_information()

Additional model information.

Returns:

Name Type Description
dict Dict[str, Union[bool, float]]

{has_model_finished,execution_time}

Source code in aquacrop/core.py
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
def get_additional_information(self) -> Dict[str, Union[bool, float]]:
    """
    Additional model information.

    Returns:
        dict: {has_model_finished,execution_time}

    """
    if self.__has_model_executed:
        return {
            "has_model_finished": self.__has_model_finished,
            "execution_time": self.__end_model_execution
            - self.__start_model_execution,
        }
    else:
        raise ValueError(
            "You cannot get results without running the model. "
            + "Please execute the run_model() method."
        )

get_crop_growth()

Return crop growth results

Source code in aquacrop/core.py
406
407
408
409
410
411
412
413
414
415
416
def get_crop_growth(self):
    """
    Return crop growth results
    """
    if self.__has_model_executed:
        return self._outputs.crop_growth
    else:
        raise ValueError(
            "You cannot get results without running the model. "
            + "Please execute the run_model() method."
        )

get_simulation_results()

Return all the simulation results

Source code in aquacrop/core.py
367
368
369
370
371
372
373
374
375
376
377
378
379
380
def get_simulation_results(self):
    """
    Return all the simulation results
    """
    if self.__has_model_executed:
        if self.__has_model_finished:
            return self._outputs.final_stats
        else:
            return False  # If the model is not finished, the results are not generated.
    else:
        raise ValueError(
            "You cannot get results without running the model. "
            + "Please execute the run_model() method."
        )

get_water_flux()

Return water flux results

Source code in aquacrop/core.py
394
395
396
397
398
399
400
401
402
403
404
def get_water_flux(self):
    """
    Return water flux results
    """
    if self.__has_model_executed:
        return self._outputs.water_flux
    else:
        raise ValueError(
            "You cannot get results without running the model. "
            + "Please execute the run_model() method."
        )

get_water_storage()

Return water storage in soil results

Source code in aquacrop/core.py
382
383
384
385
386
387
388
389
390
391
392
def get_water_storage(self):
    """
    Return water storage in soil results
    """
    if self.__has_model_executed:
        return self._outputs.water_storage
    else:
        raise ValueError(
            "You cannot get results without running the model. "
            + "Please execute the run_model() method."
        )

run_model(num_steps=1, till_termination=False, initialize_model=True, process_outputs=False)

This function is responsible for executing the model.

Arguments:

num_steps: Number of steps (Days) to be executed.

till_termination: Run the simulation to completion

initialize_model: Whether to initialize the model             (i.e., go back to beginning of season)

process_outputs: process outputs into dataframe before                 simulation is finished

Returns:

Type Description
bool

True if finished

Source code in aquacrop/core.py
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
def run_model(
    self,
    num_steps: int = 1,
    till_termination: bool = False,
    initialize_model: bool = True,
    process_outputs: bool = False,
) -> bool:
    """
    This function is responsible for executing the model.

    Arguments:

        num_steps: Number of steps (Days) to be executed.

        till_termination: Run the simulation to completion

        initialize_model: Whether to initialize the model \
        (i.e., go back to beginning of season)

        process_outputs: process outputs into dataframe before \
            simulation is finished

    Returns:
        True if finished
    """

    if initialize_model:
        self._initialize()

    if till_termination:
        self.__start_model_execution = time.time()
        while self._clock_struct.model_is_finished is False:
            (
                self._clock_struct,
                self._init_cond,
                self._param_struct,
                self._outputs,
            ) = self._perform_timestep()
        self.__end_model_execution = time.time()
        self.__has_model_executed = True
        self.__has_model_finished = True
        return True
    else:
        if num_steps < 1:
            raise ValueError("num_steps must be equal to or greater than 1.")
        self.__start_model_execution = time.time()
        for i in range(num_steps):

            if (i == range(num_steps)[-1]) and (process_outputs is True):
                self.__steps_are_finished = True

            (
                self._clock_struct,
                self._init_cond,
                self._param_struct,
                self._outputs,
            ) = self._perform_timestep()

            if self._clock_struct.model_is_finished:
                self.__end_model_execution = time.time()
                self.__has_model_executed = True
                self.__has_model_finished = True
                return True

        self.__end_model_execution = time.time()
        self.__has_model_executed = True
        self.__has_model_finished = False
        return True

CO2

Bases: object

Attributes:

ref_concentration (float): reference CO2 concentration

current_concentration (float): current CO2 concentration (initialize if constant_conc=True)

constant_conc (bool): use constant conc every season

co2_data (DataFrame): CO2 timeseries (2 columns: 'year' and 'ppm')
Source code in aquacrop/entities/co2.py
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
class CO2(object):

    """

    Attributes:

        ref_concentration (float): reference CO2 concentration

        current_concentration (float): current CO2 concentration (initialize if constant_conc=True)

        constant_conc (bool): use constant conc every season

        co2_data (DataFrame): CO2 timeseries (2 columns: 'year' and 'ppm')

    """

    def __init__(
        self,
        ref_concentration=369.41,
        current_concentration=0.,
        constant_conc=False,
        co2_data=None,
    ):
        self.ref_concentration = ref_concentration
        self.current_concentration = current_concentration
        self.constant_conc = constant_conc
        if co2_data is not None:
            self.co2_data = co2_data
        else:
            self.co2_data = pd.read_csv(
                    f"{acfp}/data/MaunaLoaCO2.txt",
                    header=1,
                    sep='\s+',
                    names=["year", "ppm"],
    )
        self.co2_data_processed = None

FieldMngt

Field Management Class containing mulches and bunds parameters

Attributes:

mulches (bool):  Soil surface covered by mulches (yield_ or N)

bunds (bool):  Surface bunds present (yield_ or N)

curve_number_adj (bool): Field conditions affect curve number (yield_ or N)

sr_inhb (bool): Management practices fully inhibit surface runoff (yield_ or N)

mulch_pct (float):  Area of soil surface covered by mulches (%)

f_mulch (float): Soil evaporation adjustment factor due to effect of mulches

z_bund (float): Bund height, user specifies in (m) but immediately converted to (mm) on initialisation for coherent calculations

bund_water (float): Initial water height in surface bunds (mm)

curve_number_adj_pct (float): Percentage change in curve number (positive or negative)
Source code in aquacrop/entities/fieldManagement.py
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
class FieldMngt:
    """
    Field Management Class containing mulches and bunds parameters

    Attributes:

        mulches (bool):  Soil surface covered by mulches (yield_ or N)

        bunds (bool):  Surface bunds present (yield_ or N)

        curve_number_adj (bool): Field conditions affect curve number (yield_ or N)

        sr_inhb (bool): Management practices fully inhibit surface runoff (yield_ or N)

        mulch_pct (float):  Area of soil surface covered by mulches (%)

        f_mulch (float): Soil evaporation adjustment factor due to effect of mulches

        z_bund (float): Bund height, user specifies in (m) but immediately converted to (mm) on initialisation for coherent calculations

        bund_water (float): Initial water height in surface bunds (mm)

        curve_number_adj_pct (float): Percentage change in curve number (positive or negative)

    """

    def __init__(
        self,
        mulches=False,
        bunds=False,
        curve_number_adj=False,
        sr_inhb=False,
        mulch_pct=50,
        f_mulch=0.5,
        z_bund=0,
        bund_water=0,
        curve_number_adj_pct=0,
    ):

        self.mulches = mulches  #  Soil surface covered by mulches (yield_ or N)
        self.bunds = bunds  #  Surface bunds present (yield_ or N)
        self.curve_number_adj = curve_number_adj  # Field conditions affect curve number (yield_ or N)
        self.sr_inhb = sr_inhb  # Management practices fully inhibit surface runoff (yield_ or N)

        self.mulch_pct = mulch_pct  #  Area of soil surface covered by mulches (%)
        self.f_mulch = f_mulch  # Soil evaporation adjustment factor due to effect of mulches
        self.z_bund = z_bund * 1000 # Bund height, user-specified as (m), here immediately converted to (mm)
        self.bund_water = bund_water  # Initial water height in surface bunds (mm)
        self.curve_number_adj_pct = curve_number_adj_pct  # Percentage change in curve number (positive or negative)

GroundWater

Ground Water Class stores information on water table params

Attributes:

water_table (str):  Water table considered (Y or N)

method (str):  Water table input data ('Constant' or 'Variable')

dates (list): water table observation dates

values (list): water table observation depths
Source code in aquacrop/entities/groundWater.py
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
class GroundWater:
    """
    Ground Water Class stores information on water table params

    Attributes:

        water_table (str):  Water table considered (Y or N)

        method (str):  Water table input data ('Constant' or 'Variable')

        dates (list): water table observation dates

        values (list): water table observation depths

    """

    def __init__(self, water_table="N", method="Constant", dates=[], values=[]):

        self.water_table = water_table
        self.method = method
        self.dates = dates
        self.values = values

IrrigationManagement

IrrigationManagement Class defines irrigation strategy

Attributes:

irrigation_method (int):  Irrigation method {0: rainfed, 1: soil moisture targets, 2: set time interval,
                                        3: predifined schedule, 4: net irrigation, 5: constant depth }

WetSurf (int): Soil surface wetted by irrigation (%)

AppEff (int): Irrigation application efficiency (%)

MaxIrr (float): Maximum depth (mm) that can be applied each day

SMT (list):  Soil moisture targets (%taw) to maintain in each growth stage (only used if irrigation method is equal to 1)

IrrInterval (int): Irrigation interval in days (only used if irrigation method is equal to 2)

Schedule (pandas.DataFrame): DataFrame containing dates and depths

NetIrrSMT (float): Net irrigation threshold moisture level (% of taw that will be maintained, for irrigation_method=4)

Depth (float): constant depth to apply on each day (mm)
Source code in aquacrop/entities/irrigationManagement.py
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
class IrrigationManagement:

    """
    IrrigationManagement Class defines irrigation strategy

    Attributes:


        irrigation_method (int):  Irrigation method {0: rainfed, 1: soil moisture targets, 2: set time interval,
                                                3: predifined schedule, 4: net irrigation, 5: constant depth }

        WetSurf (int): Soil surface wetted by irrigation (%)

        AppEff (int): Irrigation application efficiency (%)

        MaxIrr (float): Maximum depth (mm) that can be applied each day

        SMT (list):  Soil moisture targets (%taw) to maintain in each growth stage (only used if irrigation method is equal to 1)

        IrrInterval (int): Irrigation interval in days (only used if irrigation method is equal to 2)

        Schedule (pandas.DataFrame): DataFrame containing dates and depths

        NetIrrSMT (float): Net irrigation threshold moisture level (% of taw that will be maintained, for irrigation_method=4)

        Depth (float): constant depth to apply on each day (mm)

    """

    def __init__(self, irrigation_method, **kwargs):
        self.irrigation_method = irrigation_method

        self.WetSurf = 100.0
        self.AppEff = 100.0
        self.MaxIrr = 25.0
        self.MaxIrrSeason = 10_000.0
        self.SMT = np.zeros(4)
        self.IrrInterval = 0
        self.Schedule = []
        self.NetIrrSMT = 80.0
        self.depth = 0.0

        if irrigation_method == 1:
            self.SMT = [100] * 4

        if irrigation_method == 2:
            self.IrrInterval = 3

        if irrigation_method == 3:
            # wants a pandas dataframe with Date and Depth, pd.Datetime and float
            """
            dates = pd.DatetimeIndex(['20/10/1979','20/11/1979','20/12/1979'])
            depths = [25,25,25]
            irr=pd.DataFrame([dates,depths]).T
            irr.columns=['Date','Depth']
            """
            self.Schedule = pd.DataFrame(columns=["Date", "Depth"])

        if irrigation_method == 4:
            self.NetIrrSMT = 80

        if irrigation_method == 5:
            self.depth = 0

        allowed_keys = {
            "name",
            "WetSurf",
            "AppEff",
            "MaxIrr",
            "MaxIrrSeason",
            "SMT",
            "IrrInterval",
            "NetIrrSMT",
            "Schedule",
            "depth",
        }

        self.__dict__.update((k, v) for k, v in kwargs.items() if k in allowed_keys)

Output

Class to hold output data

During Simulation these are numpy arrays and are converted to pandas dataframes at the end of the simulation

Atributes:

water_flux (pandas.DataFrame, numpy.array): Daily water flux changes

water_storage (pandas.DataFrame, numpy array): daily water content of each soil compartment

crop_growth (pandas.DataFrame, numpy array): daily crop growth variables

final_stats (pandas.DataFrame, numpy array): final stats at end of each season
Source code in aquacrop/entities/output.py
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
class Output:
    """
    Class to hold output data

    During Simulation these are numpy arrays and are converted to pandas dataframes
    at the end of the simulation

    Atributes:

        water_flux (pandas.DataFrame, numpy.array): Daily water flux changes

        water_storage (pandas.DataFrame, numpy array): daily water content of each soil compartment

        crop_growth (pandas.DataFrame, numpy array): daily crop growth variables

        final_stats (pandas.DataFrame, numpy array): final stats at end of each season

    """

    def __init__(self, time_span, initial_th):

        self.water_storage = np.zeros((len(time_span), 3 + len(initial_th)))
        self.water_flux = np.zeros((len(time_span), 16))
        self.crop_growth = np.zeros((len(time_span), 15))
        self.final_stats = pd.DataFrame(
            columns=[
                "Season",
                "crop Type",
                "Harvest Date (YYYY/MM/DD)",
                "Harvest Date (Step)",
                "Dry yield (tonne/ha)",
                "Fresh yield (tonne/ha)",
                "Yield potential (tonne/ha)",
                "Seasonal irrigation (mm)",
            ]
        )

check_iwc_soil_match(iwc_layers, soil_layers)

This function checks if the number of soil layers is equivalent between the user-specified soil profile and initial water content.

Return

boolean: True if number of layers match

Source code in aquacrop/core.py
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
def check_iwc_soil_match(iwc_layers: int, soil_layers: int) -> bool:
    """
    This function checks if the number of soil layers is equivalent between the user-specified soil profile and initial water content.

    Arguments:
        iwc_layers
        soil_layers

    Return:
        boolean: True if number of layers match

    """
    if(iwc_layers == soil_layers):
        return True
    else:
        return False

check_model_is_finished(step_end_time, simulation_end_date, model_is_finished, season_counter, n_seasons, harvest_flag)

Function to check and declare model termination

Arguments:

step_end_time (str):  date of next step

simulation_end_date (str):  date of end of simulation

model_is_finished (bool):  is model finished

season_counter (int):  tracking the number of seasons simulated

n_seasons (int):  total number of seasons being simulated

harvest_flag (bool):  Has crop been harvested

Returns:

model_is_finished (bool): is simulation finished
Source code in aquacrop/timestep/check_if_model_is_finished.py
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
def check_model_is_finished(
    step_end_time: str,
    simulation_end_date: str,
    model_is_finished: bool,
    season_counter: int,
    n_seasons: int,
    harvest_flag: bool,
) -> bool:
    """
    Function to check and declare model termination


    Arguments:

        step_end_time (str):  date of next step

        simulation_end_date (str):  date of end of simulation

        model_is_finished (bool):  is model finished

        season_counter (int):  tracking the number of seasons simulated

        n_seasons (int):  total number of seasons being simulated

        harvest_flag (bool):  Has crop been harvested

    Returns:

        model_is_finished (bool): is simulation finished


    """

    # Check if current time-step is the last
    current_time = step_end_time
    if current_time < simulation_end_date:
        model_is_finished = False
    elif current_time >= simulation_end_date:
        model_is_finished = True

    # Check if at the end of last growing season ##
    # Allow model to exit early if crop has reached maturity or died, and in
    # the last simulated growing season
    if (harvest_flag is True) and (season_counter == n_seasons - 1):
        model_is_finished = True

    return model_is_finished

compute_variables(param_struct, weather_df, clock_struct, acfp=dirname(dirname(abspath(__file__))))

Function to compute additional variables needed to run the model eg. CO2

Arguments:

param_struct (ParamStruct):  Contains model paramaters

weather_df (DataFrame):  weather data

clock_struct (ClockStruct):  time params

acfp (Path):  path to aquacrop directory containing co2 data

Returns:

param_struct (ParamStruct):  updated model params
Source code in aquacrop/initialize/compute_variables.py
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
def compute_variables(
    param_struct: "ParamStruct",
    weather_df: "DataFrame",
    clock_struct: "ClockStruct",
    acfp: str = dirname(dirname(abspath(__file__))),
) -> "ParamStruct":
    """
    Function to compute additional variables needed to run the model eg. CO2

    Arguments:

        param_struct (ParamStruct):  Contains model paramaters

        weather_df (DataFrame):  weather data

        clock_struct (ClockStruct):  time params

        acfp (Path):  path to aquacrop directory containing co2 data

    Returns:

        param_struct (ParamStruct):  updated model params


    """

    if param_struct.water_table == 1:

        param_struct.Soil.add_capillary_rise_params()

    # Calculate readily evaporable water in surface layer
    if param_struct.Soil.adj_rew == 0:
        param_struct.Soil.rew = round(
            (
                1000
                * (
                    param_struct.Soil.profile.th_fc.iloc[0]
                    - param_struct.Soil.profile.th_dry.iloc[0]
                )
                * param_struct.Soil.evap_z_surf
            ),
            2,
        )

    if param_struct.Soil.calc_cn == 1:
        # adjust curve number
        ksat = param_struct.Soil.profile.Ksat.iloc[0]
        if ksat > 864:
            param_struct.Soil.cn = 46
        elif ksat > 347:
            param_struct.Soil.cn = 61
        elif ksat > 36:
            param_struct.Soil.cn = 72
        elif ksat > 0:
            param_struct.Soil.cn = 77

        assert ksat > 0

    for i in range(param_struct.NCrops):

        crop = param_struct.CropList[i]
        # crop.calculate_additional_params()

        # Crop calander
        crop = compute_crop_calendar(
            crop,
            clock_struct.planting_dates,
            clock_struct.simulation_start_date,
            clock_struct.simulation_end_date,
            clock_struct.time_span,
            weather_df,
        )

        # Harvest index param_struct.Seasonal_Crop_List[clock_struct.season_counter].Paramsgrowth coefficient
        crop.HIGC = calculate_HIGC(
            crop.YldFormCD,
            crop.HI0,
            crop.HIini,
        )

        # Days to linear harvest_index switch point
        if crop.CropType == 3:
            # Determine linear switch point and HIGC rate for fruit/grain crops
            crop.tLinSwitch, crop.dHILinear = calculate_HI_linear(
                crop.YldFormCD, crop.HIini, crop.HI0, crop.HIGC
            )
        else:
            # No linear switch for leafy vegetable or root/tiber crops
            crop.tLinSwitch = 0
            crop.dHILinear = 0.0

        param_struct.CropList[i] = crop

    # Calculate WP adjustment factor for elevation in CO2 concentration
    # Load CO2 data
    co2Data = param_struct.CO2.co2_data

    # Years
    start_year, end_year = pd.DatetimeIndex(
        [clock_struct.simulation_start_date, clock_struct.simulation_end_date]
    ).year
    sim_years = np.arange(start_year, end_year + 1)

    # Interpolate data
    CO2conc_interp = np.interp(sim_years, co2Data.year, co2Data.ppm)

    # Store data
    param_struct.CO2.co2_data_processed = pd.Series(CO2conc_interp, index=sim_years)  # maybe get rid of this

    # Get CO2 concentration for first year
    CO2conc = param_struct.CO2.co2_data_processed.iloc[0]

    # param_struct.CO2 = param_struct.co2_concentration_adj

    # if user specified constant concentration
    if  param_struct.CO2.constant_conc is True:
        if param_struct.CO2.current_concentration > 0.:
            CO2conc = param_struct.CO2.current_concentration
        else:
            CO2conc = param_struct.CO2.co2_data_processed.iloc[0]

    param_struct.CO2.current_concentration = CO2conc

    CO2ref = param_struct.CO2.ref_concentration

    # Get CO2 weighting factor for first year
    if CO2conc <= CO2ref:
        fw = 0
    else:
        if CO2conc >= 550:
            fw = 1
        else:
            fw = 1 - ((550 - CO2conc) / (550 - CO2ref))

    # Determine adjustment for each crop in first year of simulation
    for i in range(param_struct.NCrops):
        crop = param_struct.CropList[i]
        # Determine initial adjustment
        fCO2old = (CO2conc / CO2ref) / (
            1
            + (CO2conc - CO2ref)
            * (
                (1 - fw) * crop.bsted
                + fw * ((crop.bsted * crop.fsink) + (crop.bface * (1 - crop.fsink)))
            )
        )
        # New adjusted correction coefficient for CO2 (version 7 of AquaCrop)
    if (CO2conc > CO2ref):
        # Calculate shape factor
        fshape = -4.61824 - 3.43831*crop.fsink - 5.32587*crop.fsink*crop.fsink
        # Determine adjustment for CO2
        if (CO2conc >= 2000):
            fCO2new = 1.58  # Maximum CO2 adjustment 
        else:
            CO2rel = (CO2conc-CO2ref)/(2000-CO2ref)
            fCO2new = 1 + 0.58 * ((np.exp(CO2rel*fshape) - 1)/(np.exp(fshape) - 1))


    # Select adjusted coefficient for CO2
    if (CO2conc <= CO2ref):
        fCO2 = fCO2old
    elif ((CO2conc <= 550) and (fCO2old < fCO2new)):
        fCO2 = fCO2old
    else:
        fCO2 = fCO2new

        # Consider crop type
    if crop.WP >= 40:
        # No correction for C4 crops
        ftype = 0
    elif crop.WP <= 20:
        # Full correction for C3 crops
        ftype = 1
    else:
        ftype = (40 - crop.WP) / (40 - 20)

        # Total adjustment
    crop.fCO2 = 1 + ftype * (fCO2 - 1)

    param_struct.CropList[i] = crop


    # change this later
    if param_struct.NCrops == 1:
        crop_list = [
            deepcopy(param_struct.CropList[0])
            for i in range(len(param_struct.CropChoices))
        ]
        # param_struct.Seasonal_Crop_List = [deepcopy(param_struct.CropList[0]) for i in range(len(param_struct.CropChoices))]

    else:
        crop_list = param_struct.CropList

    # add crop for out of growing season
    # param_struct.Fallow_Crop = deepcopy(param_struct.Seasonal_Crop_List[0])
    Fallow_Crop = deepcopy(crop_list[0])

    param_struct.Seasonal_Crop_List = []

    for crop in crop_list:
        #crop_struct = Crop(crop.Name, crop.planting_date) # changed from CropStruct to Crop during removal of numba AOT/JIT compilation
        #for a, v in crop.__dict__.items():
        #    if hasattr(crop_struct, a):
        #        crop_struct.__setattr__(a, v)

        param_struct.Seasonal_Crop_List.append(crop)

    fallow_struct = Crop(crop.Name, crop.planting_date) # changed from CropStruct to Crop during removal of numba AOT/JIT compilation
    for a, v in Fallow_Crop.__dict__.items():
        if hasattr(fallow_struct, a):
            fallow_struct.__setattr__(a, v)

    param_struct.Fallow_Crop = fallow_struct

    return param_struct

create_soil_profile(param_struct)

funciton to create soil profile namedTuple to store soil info. Its much faster to access the info when its in a namedTuple compared to a dataframe

Arguments:

param_struct (ParamStruct):  Contains model crop and soil paramaters

Returns:

param_struct (ParamStruct):  updated with soil profile
Source code in aquacrop/initialize/create_soil_profile.py
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
def create_soil_profile(param_struct: "ParamStruct") -> "ParamStruct":
    """
    funciton to create soil profile namedTuple to store soil info.
    Its much faster to access the info when its in a namedTuple
    compared to a dataframe

    Arguments:

        param_struct (ParamStruct):  Contains model crop and soil paramaters

    Returns:

        param_struct (ParamStruct):  updated with soil profile


    """

    profile = SoilProfile(int(param_struct.Soil.profile.shape[0]))

    pdf = param_struct.Soil.profile.astype("float64")

    profile.dz = pdf.dz.values
    profile.dzsum = pdf.dzsum.values
    profile.zBot = pdf.zBot.values
    profile.z_top = pdf.z_top.values
    profile.zMid = pdf.zMid.values

    profile.Comp = np.int64(pdf.Comp.values)
    profile.Layer = np.int64(pdf.Layer.values)
    # profile.Layer_dz = pdf.Layer_dz.values
    profile.th_wp = pdf.th_wp.values
    profile.th_fc = pdf.th_fc.values
    profile.th_s = pdf.th_s.values

    profile.Ksat = pdf.Ksat.values
    profile.Penetrability = pdf.penetrability.values
    profile.th_dry = pdf.th_dry.values
    profile.tau = pdf.tau.values
    profile.th_fc_Adj = pdf.th_fc_Adj.values

    if param_struct.water_table == 1:
        profile.aCR = pdf.aCR.values
        profile.bCR = pdf.bCR.values
    else:
        profile.aCR = pdf.dz.values * 0.0
        profile.bCR = pdf.dz.values * 0.0

    # param_struct.Soil.profile = profile

    param_struct.Soil.Profile = profile

    return param_struct

outputs_when_model_is_finished(model_is_finished, flux_output, water_output, growth_outputs, steps_are_finished)

Function that turns numpy array outputs into pandas dataframes

Arguments:

model_is_finished (bool):  is model finished

flux_output (numpy.array): water flux_output

water_output (numpy.array):  water storage in each compartment

growth_outputs (numpy.array):  crop growth variables

n_seasons (int):  total number of seasons being simulated

steps_are_finished (bool):  have the simulated num_steps finished

Returns:

flux_output (pandas.DataFrame): water flux_output

water_output (pandas.DataFrame):  water storage in each compartment

growth_outputs (pandas.DataFrame):  crop growth variables
Source code in aquacrop/timestep/outputs_when_model_is_finished.py
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
def outputs_when_model_is_finished(
    model_is_finished: bool,
    flux_output: "ndarray",
    water_output: "ndarray",
    growth_outputs: "ndarray",
    steps_are_finished: bool,
):
    """
    Function that turns numpy array outputs into pandas dataframes

    Arguments:

        model_is_finished (bool):  is model finished

        flux_output (numpy.array): water flux_output

        water_output (numpy.array):  water storage in each compartment

        growth_outputs (numpy.array):  crop growth variables

        n_seasons (int):  total number of seasons being simulated

        steps_are_finished (bool):  have the simulated num_steps finished

    Returns:

        flux_output (pandas.DataFrame): water flux_output

        water_output (pandas.DataFrame):  water storage in each compartment

        growth_outputs (pandas.DataFrame):  crop growth variables


    """
    if model_is_finished is True or steps_are_finished is True:
        # ClockStruct.step_start_time = ClockStruct.step_end_time
        # ClockStruct.step_end_time = ClockStruct.step_end_time + np.timedelta64(1, "D")
        flux_output_df = pd.DataFrame(
            flux_output,
            columns=[
                "time_step_counter",
                "season_counter",
                "dap",
                "Wr",
                "z_gw",
                "surface_storage",
                "IrrDay",
                "Infl",
                "Runoff",
                "DeepPerc",
                "CR",
                "GwIn",
                "Es",
                "EsPot",
                "Tr",
                "TrPot",
            ],
        )

        water_output_df = pd.DataFrame(
            water_output,
            columns=["time_step_counter", "growing_season", "dap"]
            + ["th" + str(i) for i in range(1, water_output.shape[1] - 2)],
        )

        growth_outputs_df = pd.DataFrame(
            growth_outputs,
            columns=[
                "time_step_counter",
                "season_counter",
                "dap",
                "gdd",
                "gdd_cum",
                "z_root",
                "canopy_cover",
                "canopy_cover_ns",
                "biomass",
                "biomass_ns",
                "harvest_index",
                "harvest_index_adj",
                "DryYield",
                "FreshYield",
                "YieldPot",
            ],
        )

        return flux_output_df, water_output_df, growth_outputs_df

    return False

prepare_lars_weather(file, year, generated=True, order=['year', 'jday', 'minTemp', 'maxTemp', 'precip', 'rad'], wind_speed=3.4)

Uses FAO-PM to calculate reference evapotranspiration for LARS generated and baseline input data.

Source code in aquacrop/utils/lars.py
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
def prepare_lars_weather(
    file,
    year,
    generated=True,
    order=["year", "jday", "minTemp", "maxTemp", "precip", "rad"],
    wind_speed=3.4,
):
    """
    Uses FAO-PM to calculate reference evapotranspiration for LARS generated and baseline input data.

    """

    def vap_pres(t):
        return 0.6108 * np.exp((17.27 * t) / (t + 237.3))

    df = pd.read_csv(file, sep='\s+', header=None)

    if generated:
        df.columns = order
        df["tdelta"] = pd.to_timedelta(df.jday, unit="D")
        df["date"] = pd.to_datetime(f"{year-1}/12/31") + df["tdelta"]

        psyc = 0.054  # sychometric constant
        tmean = (df.maxTemp + df.minTemp) / 2
        e_s = (vap_pres(df.maxTemp) + vap_pres(df.minTemp)) / 2
        e_a = vap_pres(df.minTemp)
        slope = 4098 * vap_pres(tmean) / (tmean + 237.3) ** 2
        R_ns = (1 - 0.23) * df.rad
        sb_const = 4.903e-9
        R_nl = (
            sb_const
            * 0.5
            * ((df.maxTemp + 273.15) ** 4 + (df.minTemp + 273.15) ** 4)
            * (0.34 - 0.14 * (e_a) ** 0.5)
            * (1.35 * 0.77 - 0.35)
        )
        Rn = R_ns - R_nl
        u2 = wind_speed

        eto = 0.408 * slope * Rn + (psyc * 900 * u2 * (e_s - e_a) / (tmean + 273)) / (
            slope + psyc * (1 + 0.34 * u2)
        )
        df["eto"] = eto

        # df["eto"] = df.rad*(0.0023)*(((df.maxTemp+df.minTemp)/2)+17.8)*(df.maxTemp-df.minTemp)**0.5
        df.eto = df.eto.clip(0.1)
        df = df[["simyear", "minTemp", "maxTemp", "precip", "eto", "date"]]
        df.columns = ["simyear", "MinTemp", "MaxTemp", "Precipitation", "ReferenceET", "Date"]

    else:
        df.columns = order
        df["date"] = pd.to_datetime(df.year, format="%Y") + pd.to_timedelta(df.jday - 1, unit="d")

        psyc = 0.054  # sychometric constant
        tmean = (df.maxTemp + df.minTemp) / 2
        e_s = (vap_pres(df.maxTemp) + vap_pres(df.minTemp)) / 2
        e_a = vap_pres(df.minTemp)
        slope = 4098 * vap_pres(tmean) / (tmean + 237.3) ** 2
        R_ns = (1 - 0.23) * df.rad
        sb_const = 4.903e-9
        R_nl = (
            sb_const
            * 0.5
            * ((df.maxTemp + 273.15) ** 4 + (df.minTemp + 273.15) ** 4)
            * (0.34 - 0.14 * (e_a) ** 0.5)
            * (1.35 * 0.77 - 0.35)
        )
        Rn = R_ns - R_nl
        u2 = wind_speed

        eto = 0.408 * slope * Rn + (psyc * 900 * u2 * (e_s - e_a) / (tmean + 273)) / (
            slope + psyc * (1 + 0.34 * u2)
        )
        df["eto"] = eto

        # df["eto"] = df.rad*(0.0023)*(((df.maxTemp+df.minTemp)/2)+17.8)*(df.maxTemp-df.minTemp)**0.5
        df.eto = df.eto.clip(0.1)
        df = df[["minTemp", "maxTemp", "precip", "eto", "date"]]
        df.columns = ["MinTemp", "MaxTemp", "Precipitation", "ReferenceET", "Date"]

    return df

read_clock_parameters(sim_start_time, sim_end_time, off_season=False)

Function to read in start and end simulation time and return a ClockStruct object

Arguments:

sim_start_time (str): simulation start date

sim_end_time (str): simulation start date

off_season (bool): True, simulate off season
                  False, skip ahead to next season post-harvest

Returns:

clock_struct (ClockStruct): simulation time paramaters
Source code in aquacrop/initialize/read_clocks_parameters.py
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
def read_clock_parameters(
    sim_start_time: str,
    sim_end_time: str,
    off_season: bool=False) -> ClockStruct:
    """
    Function to read in start and end simulation time and return a ClockStruct object

    Arguments:

        sim_start_time (str): simulation start date

        sim_end_time (str): simulation start date

        off_season (bool): True, simulate off season
                          False, skip ahead to next season post-harvest

    Returns:

        clock_struct (ClockStruct): simulation time paramaters


    """
    check_max_simulation_days(sim_start_time, sim_end_time)

    # Extract data and put into pandas datetime format
    pandas_sim_start_time = pd.to_datetime(sim_start_time)
    pandas_sim_end_time = pd.to_datetime(sim_end_time)

    # create ClockStruct object
    clock_struct = ClockStruct()

    # Add variables
    clock_struct.simulation_start_date = pandas_sim_start_time
    clock_struct.simulation_end_date = pandas_sim_end_time

    clock_struct.n_steps = (pandas_sim_end_time - pandas_sim_start_time).days + 1
    clock_struct.time_span = pd.date_range(
        freq="D", start=pandas_sim_start_time, end=pandas_sim_end_time
    )

    clock_struct.step_start_time = clock_struct.time_span[0]
    clock_struct.step_end_time = clock_struct.time_span[1]

    clock_struct.sim_off_season = off_season

    return clock_struct

read_field_management(ParamStruct, FieldMngt, FallowFieldMngt)

store field management variables as FieldMngtStruct object

Arguments:

ParamStruct (ParamStruct):  Contains model crop and soil paramaters

FieldMngt (FieldMngt):  field mngt params

FallowFieldMngt (FieldMngt): fallow field mngt params

Returns:

ParamStruct (ParamStruct):  updated ParamStruct with field management info
Source code in aquacrop/initialize/read_field_managment.py
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
def read_field_management(
    ParamStruct: "ParamStruct",
    FieldMngt: "FieldMngt",
    FallowFieldMngt: "FieldMngt") -> "ParamStruct":

    """
    store field management variables as FieldMngtStruct object

    Arguments:

        ParamStruct (ParamStruct):  Contains model crop and soil paramaters

        FieldMngt (FieldMngt):  field mngt params

        FallowFieldMngt (FieldMngt): fallow field mngt params

    Returns:

        ParamStruct (ParamStruct):  updated ParamStruct with field management info


    """

    field_mngt_struct = FieldMngtStruct()
    for a, v in FieldMngt.__dict__.items():
        if hasattr(field_mngt_struct, a):
            field_mngt_struct.__setattr__(a, v)

    fallow_field_mngt_struct = FieldMngtStruct()
    for a, v in FallowFieldMngt.__dict__.items():
        if hasattr(fallow_field_mngt_struct, a):
            fallow_field_mngt_struct.__setattr__(a, v)

    ParamStruct.FieldMngt = field_mngt_struct
    ParamStruct.FallowFieldMngt = fallow_field_mngt_struct

    return ParamStruct

read_groundwater_table(ParamStruct, GwStruct, ClockStruct)

Function to initialise groundwater parameters

Arguments:

ParamStruct (ParamStruct): Contains model paramaters

GwStruct (GroundWater): groundwater params

ClockStruct (ClockStruct): time params

Returns:

ParamStruct (ParamStruct): updated with GW info
Source code in aquacrop/initialize/read_groundwater_table.py
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
def read_groundwater_table(
    ParamStruct: "ParamStruct",
    GwStruct: "GroundWater",
    ClockStruct: "ClockStruct") -> "ParamStruct":
    """
    Function to initialise groundwater parameters

    Arguments:

        ParamStruct (ParamStruct): Contains model paramaters

        GwStruct (GroundWater): groundwater params

        ClockStruct (ClockStruct): time params

    Returns:

        ParamStruct (ParamStruct): updated with GW info

    """

    # assign water table value and method
    WT = GwStruct.water_table
    WTMethod = GwStruct.method

    # check if water table present
    if WT == "N":
        ParamStruct.water_table = 0
        ParamStruct.z_gw = 999 * np.ones(len(ClockStruct.time_span))
        ParamStruct.zGW_dates = ClockStruct.time_span
        ParamStruct.WTMethod = "None"
    elif WT == "Y":
        ParamStruct.water_table = 1

        df = pd.DataFrame([GwStruct.dates, GwStruct.values]).T
        df.columns = ["Date", "Depth(mm)"]

        # get date in correct format
        df.Date = pd.DatetimeIndex(df.Date)
        # print(f'DF length: {len(df)}')
        # print(f'Index length: {len(df.index)}')

        if len(df) == 1:

            # if only 1 watertable depth then set that value to be constant
            # accross whole simulation            
            z_gw = pd.DataFrame(
                data=df["Depth(mm)"].iloc[0]*np.ones(len(ClockStruct.time_span)),
                index=pd.to_datetime(ClockStruct.time_span),
                columns=['Depth(mm)']
            )['Depth(mm)']

        elif len(df) > 1:
            # check water table method
            if WTMethod == "Constant":

                # No interpolation between dates

                # create daily depths for each simulation day
                z_gw = pd.Series(
                    np.nan * np.ones(len(ClockStruct.time_span)), index=ClockStruct.time_span
                )

                # assign constant depth for all dates in between
                for row in range(len(df)):
                    date = df.Date.iloc[row]
                    depth = df["Depth(mm)"].iloc[row]
                    z_gw.loc[z_gw.index >= date] = depth
                    if row == 0:
                        z_gw.loc[z_gw.index <= date] = depth

            elif WTMethod == "Variable":

                # Linear interpolation between dates

                # create daily depths for each simulation day
                # fill unspecified days with NaN
                z_gw = pd.Series(
                    np.nan * np.ones(len(ClockStruct.time_span)), index=ClockStruct.time_span
                )

                for row in range(len(df)):
                    date = df.Date.iloc[row]
                    depth = df["Depth(mm)"].iloc[row]
                    z_gw.loc[date] = depth

                # Interpolate daily groundwater depths
                z_gw = z_gw.interpolate()

        # assign values to Paramstruct object
        ParamStruct.z_gw = z_gw.values
        ParamStruct.zGW_dates = z_gw.index.values
        ParamStruct.WTMethod = WTMethod

    return ParamStruct

read_irrigation_management(ParamStruct, IrrMngt, ClockStruct)

initilize irrigation management and store as IrrMngtStruct object

Arguments:

ParamStruct (ParamStruct):  Contains model crop and soil paramaters

IrrMngt (IrrigationManagement):  irr mngt params object

ClockStruct (ClockStruct):  time paramaters

Returns:

ParamStruct (ParamStruct):  updated model paramaters
Source code in aquacrop/initialize/read_irrigation_management.py
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
def read_irrigation_management(
    ParamStruct: "ParamStruct",
    IrrMngt: "IrrigationManagement",
    ClockStruct: "ClockStruct") -> "ParamStruct":
    """
    initilize irrigation management and store as IrrMngtStruct object

    Arguments:

        ParamStruct (ParamStruct):  Contains model crop and soil paramaters

        IrrMngt (IrrigationManagement):  irr mngt params object

        ClockStruct (ClockStruct):  time paramaters


    Returns:

        ParamStruct (ParamStruct):  updated model paramaters



    """
    # If specified, read input irrigation time-series
    if IrrMngt.irrigation_method == 3:

        df = IrrMngt.Schedule.copy()
        # change the index to the date
        df.index = pd.DatetimeIndex(df.Date)

        try:
            # create a dateframe containing the daily irrigation to
            # be applied for every day in the simulation
            df = df.reindex(ClockStruct.time_span, fill_value=0).drop("Date", axis=1)

            IrrMngt.Schedule = np.array(df.values, dtype=float).flatten()

        except TypeError:
            # older version of pandas with not reindex

            # create new dataframe for whole simulation
            # populate new dataframe with old values
            new_df = pd.DataFrame(data=np.zeros(len(ClockStruct.time_span)),
                index=pd.to_datetime(ClockStruct.time_span),
                columns=['Depth']
                )

            # fill in the new dataframe with irrigation schedule
            new_df.loc[df.index]=df.Depth.values

            IrrMngt.Schedule = np.array(new_df.values, dtype=float).flatten()

    else:

        IrrMngt.Schedule = np.zeros(len(ClockStruct.time_span))

    IrrMngt.SMT = np.array(IrrMngt.SMT, dtype=float)

    irr_mngt_struct = IrrMngtStruct(len(ClockStruct.time_span))
    for a, v in IrrMngt.__dict__.items():
        if hasattr(irr_mngt_struct, a):
            irr_mngt_struct.__setattr__(a, v)

    ParamStruct.IrrMngt = irr_mngt_struct
    ParamStruct.FallowIrrMngt = IrrMngtStruct(len(ClockStruct.time_span))

    return ParamStruct

read_model_initial_conditions(ParamStruct, ClockStruct, InitWC, crop)

Function to set up initial model conditions

Arguments:

ParamStruct (ParamStruct):  Contains model paramaters

ClockStruct (ClockStruct):  time paramaters

InitWC (InitialWaterContent):  initial water content

crop (Crop): crop parameters

Returns:

ParamStruct (ParamStruct):  updated ParamStruct object

InitCond (InitialCondition):  containing initial model conditions/counters
Source code in aquacrop/initialize/read_model_initial_conditions.py
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
def read_model_initial_conditions(
    ParamStruct: "ParamStruct",
    ClockStruct: "ClockStruct",
    InitWC: "InitialWaterContent",
    crop: "Crop") -> Tuple["ParamStruct", "InitialCondition"]:
    """
    Function to set up initial model conditions

    Arguments:

        ParamStruct (ParamStruct):  Contains model paramaters

        ClockStruct (ClockStruct):  time paramaters

        InitWC (InitialWaterContent):  initial water content

        crop (Crop): crop parameters


    Returns:

        ParamStruct (ParamStruct):  updated ParamStruct object

        InitCond (InitialCondition):  containing initial model conditions/counters

    """

    ###################
    # creat initial condition class
    ###################

    InitCond = InitialCondition(len(ParamStruct.Soil.profile))

    # class_args = {key:value for key, value in InitCond_class.__dict__.items() if not key.startswith('__') and not callable(key)}
    # InitCond = InitCondStruct(**class_args)

    if ClockStruct.season_counter == -1:
        InitCond.z_root = 0.
        InitCond.cc0_adj = 0.

    elif ClockStruct.season_counter == 0:
        InitCond.z_root = ParamStruct.Seasonal_Crop_List[0].Zmin
        InitCond.cc0_adj = ParamStruct.Seasonal_Crop_List[0].CC0

    # Set HIfinal to crop's reference harvest index
    InitCond.HIfinal = crop.HI0

    ##################
    # save field management
    ##################

    # Initial surface storage between any soil bunds
    if ClockStruct.season_counter == -1:
        # First day of simulation is in fallow period
        if (ParamStruct.FallowFieldMngt.bunds) and (
            float(ParamStruct.FallowFieldMngt.z_bund) > 0.001
        ):
            # Get initial storage between surface bunds
            InitCond.surface_storage = float(ParamStruct.FallowFieldMngt.bund_water)
            if InitCond.surface_storage > float(ParamStruct.FallowFieldMngt.z_bund):
                InitCond.surface_storage = float(ParamStruct.FallowFieldMngt.z_bund)
        else:
            # No surface bunds
            InitCond.surface_storage = 0

    elif ClockStruct.season_counter == 0:
        # First day of simulation is in first growing season
        # Get relevant field management structure parameters
        FieldMngtTmp = ParamStruct.FieldMngt
        if (FieldMngtTmp.bunds) and (float(FieldMngtTmp.z_bund) > 0.001):
            # Get initial storage between surface bunds
            InitCond.surface_storage = float(FieldMngtTmp.bund_water)
            if InitCond.surface_storage > float(FieldMngtTmp.z_bund):
                InitCond.surface_storage = float(FieldMngtTmp.z_bund)
        else:
            # No surface bunds
            InitCond.surface_storage = 0

    ############
    # watertable
    ############

    profile = ParamStruct.Soil.profile

    # Check for presence of groundwater table
    if ParamStruct.water_table == 0:  # No water table present
        # Set initial groundwater level to dummy value
        InitCond.z_gw = ModelConstants.NO_VALUE
        InitCond.wt_in_soil = False
        # Set adjusted field capacity to default field capacity
        InitCond.th_fc_Adj = profile.th_fc.values
    elif ParamStruct.water_table == 1:  # Water table is present
        # Set initial groundwater level
        InitCond.z_gw = float(ParamStruct.z_gw[ClockStruct.time_step_counter])
        # Find compartment mid-points
        zMid = profile.zMid
        # Check if water table is within modelled soil profile
        if InitCond.z_gw >= 0:
            idx = zMid[zMid >= InitCond.z_gw].index
            if idx.shape[0] == 0:
                InitCond.wt_in_soil = False
            else:
                InitCond.wt_in_soil = True
        else:
            InitCond.wt_in_soil = False

        # Adjust compartment field capacity
        compi = int(len(profile)) - 1
        thfcAdj = np.zeros(compi + 1)
        while compi >= 0:
            # get soil layer of compartment
            compdf = profile.loc[compi]
            if compdf.th_fc <= 0.1:
                Xmax = 1
            else:
                if compdf.th_fc >= 0.3:
                    Xmax = 2
                else:
                    pF = 2 + 0.3 * (compdf.th_fc - 0.1) / 0.2
                    Xmax = (np.exp(pF * np.log(10))) / 100

            if (InitCond.z_gw < 0) or ((InitCond.z_gw - zMid.iloc[compi]) >= Xmax):
                for ii in range(compi+1):
                    compdfii = profile.loc[ii]
                    thfcAdj[ii] = compdfii.th_fc

                compi = -1
            else:
                if compdf.th_fc >= compdf.th_s:
                    thfcAdj[compi] = compdf.th_fc
                else:
                    if zMid.iloc[compi] >= InitCond.z_gw:
                        thfcAdj[compi] = compdf.th_s
                    else:
                        dV = compdf.th_s - compdf.th_fc
                        dFC = (dV / (Xmax ** 2)) * ((zMid.iloc[compi] - (InitCond.z_gw - Xmax)) ** 2)
                        thfcAdj[compi] = compdf.th_fc + dFC

                compi = compi - 1

        # Store adjusted field capacity values
        InitCond.th_fc_Adj = np.round(thfcAdj, 3)

    profile["th_fc_Adj"] = np.round(InitCond.th_fc_Adj, 3)

    # create hydrology df to group by layer instead of compartment
    ParamStruct.Soil.Hydrology = profile.groupby("Layer").mean().drop(["dz", "dzsum"], axis=1)
    ParamStruct.Soil.Hydrology["dz"] = profile.groupby("Layer").sum().dz

    ###################
    # initial water contents
    ###################

    typestr = InitWC.wc_type
    methodstr = InitWC.method

    depth_layer = InitWC.depth_layer
    datapoints = InitWC.value

    values = np.zeros(len(datapoints))

    hydf = ParamStruct.Soil.Hydrology

    # Assign data
    if typestr == "Num":
        # Values are defined as numbers (m3/m3) so no calculation required
        depth_layer = np.array(depth_layer, dtype=float)
        values = np.array(datapoints, dtype=float)

    elif typestr == "Pct":
        # Values are defined as percentage of taw. Extract and assign value for
        # each soil layer based on calculated/input soil hydraulic properties
        depth_layer = np.array(depth_layer, dtype=float)
        datapoints = np.array(datapoints, dtype=float)

        for ii in range(len(values)):
            if methodstr == "Depth":
                depth = depth_layer[ii]
                value = datapoints[ii]

                # Find layer at specified depth
                if depth < profile.dzsum.iloc[-1]:
                    layer = profile.query(f"{depth}<dzsum").Layer.iloc[0]
                else:
                    layer = profile.Layer.iloc[-1]

                compdf = hydf.loc[layer]

                # Calculate moisture content at specified depth
                values[ii] = compdf.th_wp + ((value / 100) * (compdf.th_fc - compdf.th_wp))
            elif methodstr == "Layer":
                # Calculate moisture content at specified layer
                layer = depth_layer[ii]
                value = datapoints[ii]

                compdf = hydf.loc[layer]

                values[ii] = compdf.th_wp + ((value / 100) * (compdf.th_fc - compdf.th_wp))

    elif typestr == "Prop":
        # Values are specified as soil hydraulic properties (SAT, FC, or WP).
        # Extract and assign value for each soil layer
        depth_layer = np.array(depth_layer, dtype=float)
        datapoints = np.array(datapoints, dtype=str)

        for ii in range(len(values)):
            if methodstr == "Depth":
                # Find layer at specified depth
                depth = depth_layer[ii]
                value = datapoints[ii]

                # Find layer at specified depth
                if depth < profile.dzsum.iloc[-1]:
                    layer = profile.query(f"{depth}<dzsum").Layer.iloc[0]
                else:
                    layer = profile.Layer.iloc[-1]

                compdf = hydf.loc[layer]

                # Calculate moisture content at specified depth
                if value == "SAT":
                    values[ii] = compdf.th_s
                if value == "FC":
                    values[ii] = compdf.th_fc
                if value == "WP":
                    values[ii] = compdf.th_wp

            elif methodstr == "Layer":
                # Calculate moisture content at specified layer
                layer = depth_layer[ii]
                value = datapoints[ii]

                compdf = hydf.loc[layer]

                if value == "SAT":
                    values[ii] = compdf.th_s
                if value == "FC":
                    values[ii] = compdf.th_fc
                if value == "WP":
                    values[ii] = compdf.th_wp

    # Interpolate values to all soil compartments

    thini = np.zeros(int(profile.shape[0]))
    if methodstr == "Layer":
        for ii in range(len(values)):
            layer = depth_layer[ii]
            value = values[ii]

            idx = profile.query(f"Layer=={int(layer)}").index

            thini[idx] = value

        InitCond.th = thini

    elif methodstr == "Depth":
        depths = depth_layer

        # Add zero point
        if depths[0] > 0:
            depths = np.append([0], depths)
            values = np.append([values[0]], values)

        # Add end point (bottom of soil profile)
        if depths[-1] < ParamStruct.Soil.zSoil:
            depths = np.append(depths, [ParamStruct.Soil.zSoil])
            values = np.append(values, [values[-1]])

        # Find centroids of compartments
        SoilDepths = profile.dzsum.values
        comp_top = np.append([0], SoilDepths[:-1])
        comp_bot = SoilDepths
        comp_mid = (comp_top + comp_bot) / 2
        # Interpolate initial water contents to each compartment
        thini = np.interp(comp_mid, depths, values)
        InitCond.th = thini

    # If groundwater table is present and calculating water contents based on
    # field capacity, then reset value to account for possible changes in field
    # capacity caused by capillary rise effects
    if ParamStruct.water_table == 1:
        if (typestr == "Prop") and (datapoints[-1] == "FC"):
            InitCond.th = InitCond.th_fc_Adj

    # If groundwater table is present in soil profile then set all water
    # contents below the water table to saturation
    if InitCond.wt_in_soil is True:
        # Find compartment mid-points
        SoilDepths = profile.dzsum.values
        comp_top = np.append([0], SoilDepths[:-1])
        comp_bot = SoilDepths
        comp_mid = (comp_top + comp_bot) / 2
        idx = np.where(comp_mid >= InitCond.z_gw)[0][0]
        for ii in range(idx, len(profile)):
            layeri = profile.loc[ii].Layer
            InitCond.th[ii] = hydf.th_s.loc[layeri]

    InitCond.thini = InitCond.th

    ParamStruct.Soil.profile = profile
    ParamStruct.Soil.Hydrology = hydf

    return ParamStruct, InitCond

read_model_parameters(clock_struct, soil, crop, weather_df)

Finalise soil and crop paramaters including planting and harvest dates save to new object param_struct

Arguments:

clock_struct (ClockStruct):  time params

soil (Soil):  soil object

crop (Crop):  crop object

weather_df (DataFrame): list of datetimes

Returns:

clock_struct (ClockStruct): updated time paramaters

param_struct (ParamStruct):  Contains model crop and soil paramaters
Source code in aquacrop/initialize/read_model_parameters.py
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
def read_model_parameters(
    clock_struct: "ClockStruct",
    soil: "Soil",
    crop: "Crop",
    weather_df: "DataFrame"):

    """
    Finalise soil and crop paramaters including planting and harvest dates
    save to new object param_struct


    Arguments:

        clock_struct (ClockStruct):  time params

        soil (Soil):  soil object

        crop (Crop):  crop object

        weather_df (DataFrame): list of datetimes

    Returns:

        clock_struct (ClockStruct): updated time paramaters

        param_struct (ParamStruct):  Contains model crop and soil paramaters

    """
    # create param_struct object
    param_struct = ParamStruct()

    soil.fill_nan()

    # Assign soil object to param_struct
    param_struct.Soil = soil

    while soil.zSoil < crop.Zmax + 0.1:
        for i in soil.profile.index[::-1]:
            if soil.profile.loc[i, "dz"] < 0.25:
                soil.profile.loc[i, "dz"] += 0.1
                soil.fill_nan()
                break

    # TODO: Why all these commented lines? The model does not allow rotations now?
    ###########
    # crop
    ###########

    #     if isinstance(crop, Iterable):
    #         cropList=list(crop)
    #     else:
    #         cropList = [crop]

    #     # assign variables to paramstruct
    #     paramStruct.nCrops = len(cropList)
    #     if paramStruct.nCrops > 1:
    #         paramStruct.SpecifiedPlantcalendar = 'yield_'
    #     else:
    #         paramStruct.SpecifiedPlantcalendar = 'N'

    #     # add crop list to paramStruct
    #     paramStruct.cropList = cropList

    ############################
    # plant and harvest times
    ############################

    #     # find planting and harvest dates
    #     # check if there is more than 1 crop or multiple plant dates in sim year
    #     if paramStruct.SpecifiedPlantcalendar == "yield_":
    #         # if here than crop rotation occours during same period

    #         # create variables from dataframe
    #         plantingDates = pd.to_datetime(planting_dates)
    #         harvestDates = pd.to_datetime(harvest_dates)

    #         if (paramStruct.nCrops > 1):

    #             cropChoices = [crop.name for crop in paramStruct.cropList]

    #         assert len(cropChoices) == len(plantingDates) == len(harvestDates)

    # elif paramStruct.nCrops == 1:
    # Only one crop type considered during simulation - i.e. no rotations
    # either within or between years
    crop_list = [crop]
    param_struct.CropList = crop_list
    param_struct.NCrops = 1

    # Get start and end years for full simulation
    sim_start_date = clock_struct.simulation_start_date
    sim_end_date = clock_struct.simulation_end_date

    if crop.harvest_date is None:
        crop = compute_crop_calendar(
            crop,
            clock_struct.planting_dates,
            clock_struct.simulation_start_date,
            clock_struct.simulation_end_date,
            clock_struct.time_span,
            weather_df,
        )
        mature = int(crop.MaturityCD + 30)
        plant = pd.to_datetime("1990/" + crop.planting_date)
        harv = plant + np.timedelta64(mature, "D")
        new_harvest_date = str(harv.month) + "/" + str(harv.day)
        crop.harvest_date = new_harvest_date

    # extract years from simulation start and end date
    start_end_years = [sim_start_date.year, sim_end_date.year]

    # check if crop growing season runs over calander year
    # Planting and harvest dates are in days/months format so just add arbitrary year
    single_year = pd.to_datetime("1990/" + crop.planting_date) < pd.to_datetime(
        "1990/" + crop.harvest_date
    )

    if single_year:
        # if normal year

        # Check if the simulation in the following year does not exceed planting date.
        mock_simulation_end_date = pd.to_datetime("1990/" + f'{sim_end_date.month}' + "/" + f'{sim_end_date.day}')
        mock_simulation_start_date = pd.to_datetime("1990/" + crop.planting_date)
        last_simulation_year_does_not_start = mock_simulation_end_date <= mock_simulation_start_date

        if last_simulation_year_does_not_start:
            start_end_years[1] = start_end_years[1] - 1

        # specify the planting and harvest years as normal
        plant_years = list(range(start_end_years[0], start_end_years[1] + 1))
        harvest_years = plant_years
    else:
        # if it takes over a year then the plant year finishes 1 year before end of sim
        # and harvest year starts 1 year after sim start

        if (
            pd.to_datetime(str(start_end_years[1] + 2) + "/" + crop.harvest_date)
            < sim_end_date
        ):

            # specify shifted planting and harvest years
            plant_years = list(range(start_end_years[0], start_end_years[1] + 1))
            harvest_years = list(range(start_end_years[0] + 1, start_end_years[1] + 2))
        else:

            plant_years = list(range(start_end_years[0], start_end_years[1]))
            harvest_years = list(range(start_end_years[0] + 1, start_end_years[1] + 1))

    # Correct for partial first growing season (may occur when simulating
    # off-season soil water balance)
    if (
        pd.to_datetime(str(plant_years[0]) + "/" + crop.planting_date)
        < clock_struct.simulation_start_date
    ):
        # shift everything by 1 year
        plant_years = plant_years[1:]
        harvest_years = harvest_years[1:]

    # ensure number of planting and harvest years are the same
    assert len(plant_years) == len(harvest_years)

    # create lists to hold variables
    planting_dates = []
    harvest_dates = []
    crop_choices = []

    # save full harvest/planting dates and crop choices to lists
    for i, _ in enumerate(plant_years):
        planting_dates.append(
            str(plant_years[i]) + "/" + param_struct.CropList[0].planting_date
        )
        harvest_dates.append(
            str(harvest_years[i]) + "/" + param_struct.CropList[0].harvest_date
        )
        crop_choices.append(param_struct.CropList[0].Name)

    # save crop choices
    param_struct.CropChoices = list(crop_choices)

    # save clock paramaters
    clock_struct.planting_dates = pd.to_datetime(planting_dates)
    clock_struct.harvest_dates = pd.to_datetime(harvest_dates)
    clock_struct.n_seasons = len(planting_dates)

    # Initialise growing season counter
    if pd.to_datetime(clock_struct.step_start_time) == clock_struct.planting_dates[0]:
        clock_struct.season_counter = 0
    else:
        clock_struct.season_counter = -1

    # return the FileLocations object as i have added some elements
    return clock_struct, param_struct

read_weather_inputs(clock_sctruct, weather_df)

Clip weather to start and end simulation dates

Arguments:

clock_sctruct (ClockStruct): ClockStruct object

weather_df (DataFrame): weather dataframe

Returns:

weather_df (DataFrame): clipped weather dataframe
Source code in aquacrop/initialize/read_weather_inputs.py
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
def read_weather_inputs(
    clock_sctruct: "ClockStruct",
    weather_df: "DataFrame") -> "DataFrame":
    """
    Clip weather to start and end simulation dates

    Arguments:

        clock_sctruct (ClockStruct): ClockStruct object

        weather_df (DataFrame): weather dataframe

    Returns:

        weather_df (DataFrame): clipped weather dataframe

    """

    # get the start and end dates of simulation
    start_date = clock_sctruct.simulation_start_date
    end_date = clock_sctruct.simulation_end_date

    if weather_df.Date.iloc[0] > start_date:
        raise ValueError(
            "The first date of the climate data cannot be longer than the start date of the model."
        )

    if weather_df.Date.iloc[-1] < end_date:
        raise ValueError(
            "The model end date cannot be longer than the last date of climate data."
        )

    # remove weather data outside of simulation dates
    weather_df = weather_df[weather_df.Date >= start_date]
    weather_df = weather_df[weather_df.Date <= end_date]

    return weather_df

solution_single_time_step(init_cond, param_struct, clock_struct, weather_step, outputs)

Function to perform AquaCrop solution for a single time step

Arguments:

init_cond (InitialCondition):  containing current variables+counters

param_struct (ParamStruct):  contains model paramaters

clock_struct (ClockStruct):  model time paramaters

weather_step (numpy.ndarray):  contains precipitation,ET,temp_max,temp_min for current day

outputs (Output):  object to store outputs

Returns:

NewCond (InitialCondition):  containing updated simulation variables+counters

param_struct (ParamStruct):  contains model paramaters

outputs (Output):  object to store outputs
Source code in aquacrop/timestep/run_single_timestep.py
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
def solution_single_time_step(
    init_cond: "InitialCondition",
    param_struct: "ParamStruct",
    clock_struct: "ClockStruct",
    weather_step: "ndarray",
    outputs:"Output",
) ->  Tuple["InitialCondition", "ParamStruct","Output"]:
    """
    Function to perform AquaCrop solution for a single time step

    Arguments:

        init_cond (InitialCondition):  containing current variables+counters

        param_struct (ParamStruct):  contains model paramaters

        clock_struct (ClockStruct):  model time paramaters

        weather_step (numpy.ndarray):  contains precipitation,ET,temp_max,temp_min for current day

        outputs (Output):  object to store outputs

    Returns:

        NewCond (InitialCondition):  containing updated simulation variables+counters

        param_struct (ParamStruct):  contains model paramaters

        outputs (Output):  object to store outputs

    """

    # Unpack structures
    Soil = param_struct.Soil
    CO2 = param_struct.CO2
    precipitation = weather_step[2]
    temp_max = weather_step[1]
    temp_min = weather_step[0]
    et0 = weather_step[3]

    # Store initial conditions in structure for updating %%
    NewCond = init_cond
    if param_struct.water_table == 1:
        GroundWater = param_struct.z_gw[clock_struct.time_step_counter]
    else:
        GroundWater = 0

    # Check if growing season is active on current time step %%
    if clock_struct.season_counter >= 0:
        # Check if in growing season
        CurrentDate = clock_struct.step_start_time
        planting_date = clock_struct.planting_dates[clock_struct.season_counter]
        harvest_date = clock_struct.harvest_dates[clock_struct.season_counter]

        if (
            (planting_date <= CurrentDate)
            and (harvest_date >= CurrentDate)
            and (NewCond.crop_mature is False)
            and (NewCond.crop_dead is False)
        ):
            growing_season = True
        else:
            growing_season = False
        # Assign crop, irrigation management, and field management structures
        Crop_ = param_struct.Seasonal_Crop_List[clock_struct.season_counter]
        Crop_Name = param_struct.CropChoices[clock_struct.season_counter]
        IrrMngt = param_struct.IrrMngt

        if growing_season is True:
            FieldMngt = param_struct.FieldMngt
        else:
            FieldMngt = param_struct.FallowFieldMngt

    else:
        # Not yet reached start of first growing season
        growing_season = False
        # Assign crop, irrigation management, and field management structures
        # Assign first crop as filler crop
        Crop_ = param_struct.Fallow_Crop
        Crop_Name = "fallow"

        Crop_.Aer = 5
        Crop_.Zmin = 0.3
        IrrMngt = param_struct.FallowIrrMngt
        FieldMngt = param_struct.FallowFieldMngt

    # Increment time counters %%
    if growing_season is True:
        # Calendar days after planting
        NewCond.dap = NewCond.dap + 1
        # Growing degree days after planting
        gdd = growing_degree_day(
            Crop_.GDDmethod, Crop_.Tupp, Crop_.Tbase, temp_max, temp_min
        )

        # Update cumulative gdd counter
        NewCond.gdd = gdd
        NewCond.gdd_cum = NewCond.gdd_cum + gdd

        NewCond.growing_season = True
    else:
        NewCond.growing_season = False

        # Calendar days after planting
        NewCond.dap = 0
        # Growing degree days after planting
        gdd = 0.3
        NewCond.gdd_cum = 0

    # save current timestep counter
    NewCond.time_step_counter = clock_struct.time_step_counter
    NewCond.precipitation = weather_step[2]
    NewCond.temp_max = weather_step[1]
    NewCond.temp_min = weather_step[0]
    NewCond.et0 = weather_step[3]

    crop = Crop_

    # Run simulations %%
    # 1. Check for groundwater table
    NewCond.th_fc_Adj, NewCond.wt_in_soil, NewCond.z_gw = check_groundwater_table(
        Soil.Profile,
        NewCond.z_gw,
        NewCond.th,
        NewCond.th_fc_Adj,
        param_struct.water_table,
        GroundWater
    )

    # 2. Root development
    NewCond.z_root, NewCond.r_cor = root_development(
        crop,
        Soil.Profile,
        NewCond.dap,
        NewCond.z_root,
        NewCond.delayed_cds,
        NewCond.gdd_cum,
        NewCond.delayed_gdds,
        NewCond.tr_ratio,
        NewCond.th,
        NewCond.canopy_cover,
        NewCond.canopy_cover_ns,
        NewCond.germination,
        NewCond.r_cor,
        NewCond.t_pot,
        NewCond.z_gw,
        gdd,
        growing_season,
        param_struct.water_table,
    )

    # 3. Pre-irrigation
    NewCond, PreIrr = pre_irrigation(
        Soil.Profile, crop, NewCond, growing_season, IrrMngt
    )

    # 4. Drainage

    NewCond.th, DeepPerc, FluxOut = drainage(
        Soil.Profile,
        NewCond.th,
        NewCond.th_fc_Adj,
    )

    # 5. Surface runoff
    Runoff, Infl, NewCond.day_submerged = rainfall_partition(
        precipitation,
        NewCond.th,
        NewCond.day_submerged,
        FieldMngt.sr_inhb,
        FieldMngt.bunds,
        FieldMngt.z_bund,
        FieldMngt.curve_number_adj_pct,
        Soil.cn,
        Soil.adj_cn,
        Soil.z_cn,
        Soil.nComp,
        Soil.Profile,
    )

    # 6. Irrigation
    NewCond.depletion, NewCond.taw, NewCond.irr_cum, Irr = irrigation(
        IrrMngt.irrigation_method,
        IrrMngt.SMT,
        IrrMngt.AppEff,
        IrrMngt.MaxIrr,
        IrrMngt.IrrInterval,
        IrrMngt.Schedule,
        IrrMngt.depth,
        IrrMngt.MaxIrrSeason,
        NewCond.growth_stage,
        NewCond.irr_cum,
        NewCond.e_pot,
        NewCond.t_pot,
        NewCond.z_root,
        NewCond.th,
        NewCond.dap,
        NewCond.time_step_counter,
        crop,
        Soil.Profile,
        Soil.z_top,
        growing_season,
        precipitation,
        Runoff,
    )

    # 7. Infiltration
    (
        NewCond.th,
        NewCond.surface_storage,
        DeepPerc,
        Runoff,
        Infl,
        FluxOut,
    ) = infiltration(
        Soil.Profile,
        NewCond.surface_storage,
        NewCond.th_fc_Adj,
        NewCond.th,
        Infl,
        Irr,
        IrrMngt.AppEff,
        FieldMngt.bunds,
        FieldMngt.z_bund,
        FluxOut,
        DeepPerc,
        Runoff,
        growing_season,
    )
    # 8. Capillary Rise
    NewCond, CR = capillary_rise(
        Soil.Profile,
        Soil.nLayer,
        Soil.fshape_cr,
        NewCond,
        FluxOut,
        param_struct.water_table,
    )

    # 9. Check germination
    NewCond = germination(
        NewCond,
        Soil.z_germ,
        Soil.Profile,
        crop.GermThr,
        crop.PlantMethod,
        gdd,
        growing_season,
    )

    # 10. Update growth stage
    NewCond = growth_stage(crop, NewCond, growing_season)

    # 11. Canopy cover development
    NewCond = canopy_cover(
        crop, Soil.Profile, Soil.z_top, NewCond, gdd, et0, growing_season
    )

    # 12. Soil evaporation
    (
        NewCond.e_pot,
        NewCond.th,
        NewCond.stage2,
        NewCond.w_stage_2,
        NewCond.w_surf,
        NewCond.surface_storage,
        NewCond.evap_z,
        Es,
        EsPot,
    ) = soil_evaporation(
        clock_struct.evap_time_steps,
        clock_struct.sim_off_season,
        clock_struct.time_step_counter,
        Soil.Profile,
        Soil.evap_z_min,
        Soil.evap_z_max,
        Soil.rew,
        Soil.kex,
        Soil.fwcc,
        Soil.f_wrel_exp,
        Soil.f_evap,
        crop.CalendarType,
        crop.Senescence,
        IrrMngt.irrigation_method,
        IrrMngt.WetSurf,
        FieldMngt.mulches,
        FieldMngt.f_mulch,
        FieldMngt.mulch_pct,
        NewCond.dap,
        NewCond.w_surf,
        NewCond.evap_z,
        NewCond.stage2,
        NewCond.th,
        NewCond.delayed_cds,
        NewCond.gdd_cum,
        NewCond.delayed_gdds,
        NewCond.ccx_w,
        NewCond.canopy_cover_adj,
        NewCond.ccx_act,
        NewCond.canopy_cover,
        NewCond.premat_senes,
        NewCond.surface_storage,
        NewCond.w_stage_2,
        NewCond.e_pot,
        et0,
        Infl,
        precipitation,
        Irr,
        growing_season,
    )

    # 13. Crop transpiration
    Tr, TrPot_NS, TrPot, NewCond, IrrNet = transpiration(
        Soil.Profile,
        Soil.nComp,
        Soil.z_top,
        crop,
        IrrMngt.irrigation_method,
        IrrMngt.NetIrrSMT,
        NewCond,
        et0,
        CO2,
        growing_season,
        gdd,
    )

    # 14. Groundwater inflow
    NewCond, GwIn = groundwater_inflow(Soil.Profile, NewCond)

    # 15. Reference harvest index
    (NewCond.hi_ref, NewCond.yield_form, NewCond.pct_lag_phase) = HIref_current_day( # ,NewCond.HIfinal
        NewCond.hi_ref,
        NewCond.HIfinal,
        NewCond.dap,
        NewCond.delayed_cds,
        NewCond.yield_form,
        NewCond.pct_lag_phase,
        NewCond.canopy_cover,
        NewCond.cc_prev,
        NewCond.ccx_w,
        crop,
        growing_season,
    )

    # 16. Biomass accumulation
    (NewCond.biomass, NewCond.biomass_ns) = biomass_accumulation(
        crop,
        NewCond.dap,
        NewCond.delayed_cds,
        NewCond.hi_ref,
        NewCond.pct_lag_phase,
        NewCond.biomass,
        NewCond.biomass_ns,
        Tr,
        TrPot_NS,
        et0,
        growing_season,
    )

    # 17. Harvest index
    NewCond = harvest_index(
        Soil.Profile, Soil.z_top, crop, NewCond, et0, temp_max, temp_min, growing_season
    )

    # 18. Yield potential
    NewCond.YieldPot = (NewCond.biomass_ns / 100) * NewCond.harvest_index

    # 19. Crop yield_ (dry and fresh)
    if growing_season is True:
        # Calculate crop yield_ (tonne/ha)
        NewCond.DryYield = (NewCond.biomass / 100) * NewCond.harvest_index_adj
        NewCond.FreshYield = NewCond.DryYield / (crop.YldWC / 100)
        # print( clock_struct.time_step_counter,(NewCond.biomass/100),NewCond.harvest_index_adj)
        # Check if crop has reached maturity
        if ((crop.CalendarType == 1) and (NewCond.dap >= crop.Maturity)) or (
            (crop.CalendarType == 2) and (NewCond.gdd_cum >= crop.Maturity)
        ):
            # Crop has reached maturity
            NewCond.crop_mature = True

    elif growing_season is False:
        # Crop yield_ is zero outside of growing season
        NewCond.DryYield = 0
        NewCond.FreshYield = 0

    # 20. Root zone water
    _TAW = TAW()
    _water_root_depletion = Dr()
    # thRZ = RootZoneWater()

    Wr, _water_root_depletion.Zt, _water_root_depletion.Rz, _TAW.Zt, _TAW.Rz, _, _, _, _, _, _ = root_zone_water(
        Soil.Profile,
        float(NewCond.z_root),
        NewCond.th,
        Soil.z_top,
        float(crop.Zmin),
        crop.Aer,
    )

    # 21. Update net irrigation to add any pre irrigation
    IrrNet = IrrNet + PreIrr
    NewCond.irr_net_cum = NewCond.irr_net_cum + PreIrr

    # Update model outputs %%
    row_day = clock_struct.time_step_counter
    row_gs = clock_struct.season_counter

    # Irrigation
    if growing_season is True:
        if IrrMngt.irrigation_method == 4:
            # Net irrigation
            IrrDay = IrrNet
            IrrTot = NewCond.irr_net_cum
        else:
            # Irrigation
            IrrDay = Irr
            IrrTot = NewCond.irr_cum

    else:
        IrrDay = 0
        IrrTot = 0

        NewCond.depletion = _water_root_depletion.Rz
        NewCond.taw = _TAW.Rz

    # Water contents
    outputs.water_storage[row_day, :3] = np.array(
        [clock_struct.time_step_counter, growing_season, NewCond.dap]
    )
    outputs.water_storage[row_day, 3:] = NewCond.th

    # Water fluxes
    # print(f'Saving NewCond.z_gw to outputs: {NewCond.z_gw}')
    outputs.water_flux[row_day, :] = [
        clock_struct.time_step_counter,
        clock_struct.season_counter,
        NewCond.dap,
        Wr,
        NewCond.z_gw,
        NewCond.surface_storage,
        IrrDay,
        Infl,
        Runoff,
        DeepPerc,
        CR,
        GwIn,
        Es,
        EsPot,
        Tr,
        TrPot,
    ]

    # Crop growth
    outputs.crop_growth[row_day, :] = [
        clock_struct.time_step_counter,
        clock_struct.season_counter,
        NewCond.dap,
        gdd,
        NewCond.gdd_cum,
        NewCond.z_root,
        NewCond.canopy_cover,
        NewCond.canopy_cover_ns,
        NewCond.biomass,
        NewCond.biomass_ns,
        NewCond.harvest_index,
        NewCond.harvest_index_adj,
        NewCond.DryYield,
        NewCond.FreshYield,
        NewCond.YieldPot,
    ]

    # Final output (if at end of growing season)
    if clock_struct.season_counter > -1:
        if (
            (NewCond.crop_mature is True)
            or (NewCond.crop_dead is True)
            or (
                clock_struct.harvest_dates[clock_struct.season_counter]
                == clock_struct.step_end_time
            )
        ) and (NewCond.harvest_flag is False):

            # Store final outputs
            outputs.final_stats.loc[row_gs] = [
                clock_struct.season_counter,
                Crop_Name,
                clock_struct.step_end_time,
                clock_struct.time_step_counter,
                NewCond.DryYield,
                NewCond.FreshYield,
                NewCond.YieldPot,
                IrrTot,
            ]

            # Set harvest flag
            NewCond.harvest_flag = True

    return NewCond, param_struct, outputs

update_time(clock_struct, init_cond, param_struct, weather, crop)

Function to update current time in model.

Arguments:

clock_struct (ClockStruct):  model time paramaters

init_cond (InitialCondition):  containing sim variables+counters

param_struct (ParamStruct):  containing model paramaters

weather (numpy.array):  weather data for simulation period

Returns:

clock_struct (ClockStruct):  model time paramaters

init_cond (InitialCondition):  containing reset model paramaters

param_struct (ParamStruct):  containing model paramaters
Source code in aquacrop/timestep/update_time.py
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
def update_time(
    clock_struct: "ClockStruct",
    init_cond: "InitialCondition",
    param_struct: "ParamStruct",
    weather: "ndarray",
    crop: "Crop",
    ) -> Tuple["ClockStruct","InitialCondition", "ParamStruct"]:
    """
    Function to update current time in model.

    Arguments:

        clock_struct (ClockStruct):  model time paramaters

        init_cond (InitialCondition):  containing sim variables+counters

        param_struct (ParamStruct):  containing model paramaters

        weather (numpy.array):  weather data for simulation period

    Returns:

        clock_struct (ClockStruct):  model time paramaters

        init_cond (InitialCondition):  containing reset model paramaters

        param_struct (ParamStruct):  containing model paramaters
    """
    # Update time
    if clock_struct.model_is_finished is False:
        if (init_cond.harvest_flag is True) and (
            (clock_struct.sim_off_season is False)
        ):
            # TODO: sim_off_season will always be False.

            # End of growing season has been reached and not simulating
            # off-season soil water balance. Advance time to the start of the
            # next growing season.
            # Check if in last growing season
            if clock_struct.season_counter < clock_struct.n_seasons - 1:
                # Update growing season counter
                clock_struct.season_counter = clock_struct.season_counter + 1
                # Update time-step counter

                clock_struct.time_step_counter = clock_struct.time_span.get_loc(
                    clock_struct.planting_dates[clock_struct.season_counter]
                )
                # Update start time of time-step
                clock_struct.step_start_time = clock_struct.time_span[
                    clock_struct.time_step_counter
                ]
                # Update end time of time-step
                clock_struct.step_end_time = clock_struct.time_span[
                    clock_struct.time_step_counter + 1
                ]
                # Reset initial conditions for start of growing season
                init_cond, param_struct = reset_initial_conditions(
                    clock_struct, init_cond, param_struct, weather, crop
                )

        else:
            # Simulation considers off-season, so progress by one time-step
            # (one day)
            # Time-step counter
            clock_struct.time_step_counter = clock_struct.time_step_counter + 1
            # Start of time step (beginning of current day)
            # clock_struct.time_span = pd.Series(clock_struct.time_span)
            clock_struct.step_start_time = clock_struct.time_span[
                clock_struct.time_step_counter
            ]
            # End of time step (beginning of next day)
            clock_struct.step_end_time = clock_struct.time_span[
                clock_struct.time_step_counter + 1
            ]
            # Check if it is not the last growing season
            if clock_struct.season_counter < clock_struct.n_seasons - 1:
                # Check if upcoming day is the start of a new growing season
                if (
                    clock_struct.step_start_time
                    == clock_struct.planting_dates[clock_struct.season_counter + 1]
                ):
                    # Update growing season counter
                    clock_struct.season_counter = clock_struct.season_counter + 1
                    # Reset initial conditions for start of growing season
                    init_cond, param_struct = reset_initial_conditions(
                        clock_struct, init_cond, param_struct, weather, crop
                    )

    return clock_struct, init_cond, param_struct

aquacrop.utils.prepare_weather

prepare_weather(weather_file_path)

function to read in weather data and return a dataframe containing
the weather data

Arguments:

FileLocations): FileLocationsClass: input File Locations

weather_file_path): `str): file location of weather data

Returns:

weather_df (pandas.DataFrame): weather data for simulation period

Source code in aquacrop/utils/prepare_weather.py
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
def prepare_weather(weather_file_path):
    """
    function to read in weather data and return a dataframe containing
    the weather data

    Arguments:\n

FileLocations): `FileLocationsClass`:  input File Locations

weather_file_path): `str):  file location of weather data



    Returns:

weather_df (pandas.DataFrame):  weather data for simulation period

    """

    weather_df = pd.read_csv(weather_file_path, header=0, sep='\s+')

    assert len(weather_df.columns) == 7

    # rename the columns
    weather_df.columns = str(
        "Day Month Year MinTemp MaxTemp Precipitation ReferenceET").split()

    # put the weather dates into datetime format
    weather_df["Date"] = pd.to_datetime(weather_df[["Year", "Month", "Day"]])

    # drop the day month year columns
    weather_df = weather_df.drop(["Day", "Month", "Year"], axis=1)

    # set limit on ET0 to avoid divide by zero errors
    weather_df['ReferenceET'] = weather_df['ReferenceET'].clip(lower=0.1)

    return weather_df